Determination of long half-life radioisotopes by mass spectrometry techniques in norm materials

  1. Barrado, Ana I.
  2. Jimenez Barredo, Fernando 1
  3. Conde, Estefanía
  4. Hasözbek, Altug 1
  5. Fernandez, Marta
  6. Escareño, Edmundo
  7. Cobo, Jose Manuel
  1. 1 Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Spain
Zeitschrift:
Radiation Physics and Chemistry

ISSN: 0969-806X

Datum der Publikation: 2024

Seiten: 112013

Art: Artikel

DOI: 10.1016/J.RADPHYSCHEM.2024.112013 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Radiation Physics and Chemistry

Zusammenfassung

This work proposes a new approach for the analysis of radionuclides in NORM-type solid materials included in a European-level intercomparison test (Environmental Radiation Monitoring, REM2020), provided by the Environmental Radiation Monitoring group of the Joint Research Centre (JRC). The measurement techniques employed are inductively coupled plasma mass spectrometry (ICP-MS), using both quadrupole analyzer-equipped instruments (Q-ICP-MS) and high-resolution instruments with magnetic sector analyzer (HR-ICP-MS), and atomic emission spectroscopy (ICP-OES).Initially, the samples undergo microwave digestion using EPA methods adapted to the environmental matrix, yielding a nitric acid solution suitable for subsequent chemical analysis.Isotopes 40K, 235U, 238U, 230Th, and 232Th have been quantified due to their relevance from both radiological and environmental perspectives. An additional advantage of the proposed method is that besides determining concentrations and activities, it is also possible to ascertain the isotopic relationships of the radionuclides present in the samples, thereby determining whether the radiation originates from natural or anthropogenic sources.

Bibliographische Referenzen

  • IAEA . International Atomic Energy Agency; 1989. Measurements of Radionuclides in Food and the Environment. A guidebook. Technical Reports, Series No: 295. Vienna.
  • National Research Council. 1999. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials. Washington, DC: The National Academies Press. https://doi.org/10.17226/6360.
  • IAEA NORM Industries and Regulatory Considerations. https://nucleus.iaea.org/sites/orpnet/training/norm/Shared%20Documents/NORM%20in%20industrial%20operations%20and%20regulatory%20considerations%20update%20.pdf .
  • IAEA Characterization of NORM https://nucleus.iaea.org/sites/orpnet/training/norm/Shared%20Documents/Characterization%20of%20NORM.pdf.
  • (1999), Radiation Protection, 112
  • Alexander, (1990), J. Radioanal. Nucl. Ch., Letters, 145, pp. 201
  • Paschoa, (1998), Appl. Radiat. isotopes, 49, pp. 189, 10.1016/S0969-8043(97)00239-X
  • Mantero, (2015), Radiat. Phys. Chem., 116, pp. 78, 10.1016/j.radphyschem.2015.02.018
  • Irene García Díaz, M.J. Gázquez, Juan Pedro Bolivar and Felix A. López. 2016 Characterization and Valorization of Norm Wastes for Construction Materials http://dx.doi.org/10.5772/63196.
  • Swinney, (2018), Nucl. Technol., 203, pp. 1
  • Puertas, (2021), Materiales De Construcción, 71, pp. e259, 10.3989/mc.2021.13520
  • Huang, (2020), Chem. Eng. J., 388, 10.1016/j.cej.2020.124349
  • Yilmaz, (2021), Environ. Tchnol. Inno., 23
  • Becker, (2003), Int. J. Mass Spectrom., 228, pp. 127, 10.1016/S1387-3806(03)00270-7
  • Ketterer, (2000), J. Anal. At. Spectrom., 15, 10.1039/b001787f
  • Richter, (2010), International Journal of Mass Spectrometry, 259, pp. 94, 10.1016/j.ijms.2010.06.004
  • Krachlet, (2012), Microchemical Journal, 105, pp. 9, 10.1016/j.microc.2012.03.018
  • Sieber, (2002), Cement and concrete Research, 32, pp. 1899, 10.1016/S0008-8846(02)00896-7
  • Harms, (2010), Applied Radiaton and Isotopes, 68, pp. 1471, 10.1016/j.apradiso.2009.11.031
  • Lee, (2022), Journal of Environmental Radiactivity, 255
  • Al-Sulaiti, (2011), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652, pp. 915, 10.1016/j.nima.2011.01.020
  • YokoYama, (2022), Annals of Nuclear Energy, 175, 10.1016/j.anucene.2022.109240
  • Rowbottom, (1997), Cement and Concrete Research Volume, 27, pp. 1681, 10.1016/S0008-8846(97)00160-9
  • Maxwell, (2011), Multivariate Behavioral Research, 46, 10.1080/00273171.2011.606716
  • Wang, (2018), Journal of Radioanalitical and Nucelar Chemistry, 316, pp. 411, 10.1007/s10967-018-5756-x
  • IAEA Specific Safety Guide SSG-32. Protection of the Public against Exposure Indoors due to Radon and other Natural Sources of Radiation. IAEA 2015.
  • Lariviere, (2006), Spectrochim. Acta B, 61, pp. 877, 10.1016/j.sab.2006.07.004
  • Kato, (2000), Fresenius J Anal Chem, 366, pp. 54, 10.1007/s002160050011
  • Morishige, (2008), SEI Technical Review, 66, pp. 106
  • Weyer, (2008), Geochimica et Cosmochimica Acta, 72, pp. 345, 10.1016/j.gca.2007.11.012
  • Miller J.N., Miller J.C., 2010. Statistics and Chemometrics for Analytical Chemistry, Sixth edition, Pearson Education Limited. ISBN 0 273 69432 4