Datación por luminiscenciaópticamente estimulada (OSL) y termoluminiscencia (TL)
- Alicia Medialdea Utande 1
- Jorge Rivera-Silva 2
- 1 Centro Nacional de Investigación sobre la Evolución Humana (CENIEH)
- 2 Servicio de Radioisótopos, Centro de Investigación, Tecnología e Innovación (CITIUS). Universidad de Sevilla.
ISSN: 0214-1744
Année de publication: 2022
Volumen: 36
Número: 3-4
Pages: 255-270
Type: Article
D'autres publications dans: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario
Résumé
La datación por luminiscencia se ha convertido en los últimos años en uno de los métodos claves para establecer cronologías absolutas en el periodo del Cuaternario. La posibilidad de aplicarlo sobre granos de cuarzo y feldespato, abundantes en casi todos los ambientes sedimentarios y presentes en las piezas cerámicas, hace que sea uno de los métodos de datación más versátiles tanto en geología como arqueología. La luminiscencia ópticamente estimulada (OSL) y las variantes de esta técnica, así como la termoluminiscencia (TL) permiten datar el último momento en que estos granos minerales estuvieron expuestos a la luz solar o fueron sometidos a altas temperaturas antes de quedar depositados y enterrados. Los avances en la técnica han permitido aumentar la precisión, pudiendo estimar edades con un error menor al 10 %, cubriendo el periodo que va desde el presente a varios cientos de miles de años. Las dificultades que presentaba esta técnica en sus comienzos, como el blanqueamiento parcial o las diferencias en la señal luminiscente, son, hoy en día, información añadida a las dataciones estimadas. Este artículo pretende proporcionar la información necesaria para que los usuarios de esta técnica puedan aprovechar al máximo su potencial y les ayude en la interpretación de los resultados.
Références bibliographiques
- Citas Adamiec, G. (2000). Variations in luminescence properties of single quartz grains and their consequences for equivalent dose estimation. Radiation Measurements, 32, 427-432. https://doi.org/10.1016/S1350-4487(00)00043-3
- Adamiec, G., Duller, G.A.T., Roberts, H.M., Wintle, A.G. (2010). Improving the TT-OSL SAR protocol through source trap characterisation. Radiation Measurements 45, 768-777. https://doi.org/10.1016/j.radmeas.2010.03.009
- Aitken, M.J. (1985). Thermoluminescence dating. Academic Press.
- Aitken, M.J. (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.
- Ankjærgaard, C., Guralnik, B., Buylaert, J.-P., Reimann, T., Yi, S.W., Wallinga, J. (2016). Violet stimulated luminescence dating of quartz from Luochuan (Chinese loess plateau): agreement with independent chronology up to ~600 ka. Quaternary Geochronology, 34, 33–46. https://doi.org/10.1016/j.quageo.2016.03.001
- Bartolomé, M., Sancho, C., Benito, G., Medialdea, A., Calle, M., Moreno, A., Leunda, M., Luetscher, M., Muñoz, A., Bastida, J., Cheng, H., Edwards, R. L. (2021). Effects of glaciation on karst hydrology and sedimentology during the Last Glacial Cycle: The case of Granito cave, Central Pyrenees (Spain). Catena 206, 105252. https://doi.org/10.1016/j.catena.2021.105252.
- Bøtter-Jensen, L., McKeever, S.W.S., and Wintle, A.G. (2003). Optically stimulated luminescence dosimetry. Elsevier. https://doi.org/10.1016/B978-044450684-9/50091-X
- Duller, G.A.T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161–165. https://doi.org/10.1016/S1350-4487(02)00170-1
- Duller, G.A.T. (2008). Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas, 37: 589-612. https://doi.org/10.1111/j.1502-3885.2008.00051.x
- Duller G.A.T. y Wintle, A.G. (2012). A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology, 7, 6-20. https://doi.org/10.1016/j.quageo.2011.09.003
- Durcan, J.A., King, G E., Duller, G.A.T. (2015). DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronology 28, 54–61. https://doi.org/10.1016/j.quageo.2015.03.012
- Durcan, J.A. (2021). Luminescence Dating. En: Encyclopedia of Geology, 2nd Edition. https://doi.org/10.1016/B978-0-12-409548-9.12105-0
- Faershtein, G., Guralnik, B., Lambert, R., Matmon, A., Porat, N. (2018). Investigating the thermal stability of TT-OSL main source trap. Radiation Measurements, 119, 102-111. https://doi.org/10.1016/j.radmeas.2018.09.010
- Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part 1, experimental design and statistical models. Archaeometry 41, 339-364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x
- Galbraith, R.F. y Roberts, R.G. (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 1-27. https://doi.org/10.1016/j.quageo.2012.04.020
- Guérin, G., Mercier, N., Adamiec, G. (2011). Dose-rate conversion factors: update. Ancient TL 29, 5–8.
- IAEA, International Atomic Energy Agency (2011). Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. IAEA Analytical Quality in Nuclear Applications Series, Issue 19, 2.
- Li, S.H. (1994). Optical dating: Insufficient bleached sediments. Radiation Measurements 23, 563-567. https://doi.org/10.1016/1350-4487(94)90100-7
- Li, B., Li, S.H. (2006). Studies of thermal stability of charges associated with thermal transfer of OSL from quartz. Journal of Physics D-Applied Physics 39, 2941-2949. https://doi.org/10.1088/0022-3727/39/14/011
- Liritzis, I., Stamoulis, K., Papachristodoulou, C., Ioannides, K. (2013). A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry 13, 1-15.
- Machado, M.J., Medialdea, A., Calle, M., Rico, M.T., Sánchez-Moya, Y., Sopeña, A., Benito, G. (2017). Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quaternary Science Reviews, 171, 182-198. https://doi.org/10.1016/j.quascirev.2017.07.014
- Medialdea, A. (2013). Towards the reconstruction of flood histories: luminescence dating of palaeoflood deposits. Tesis Doctoral, Universidad Autónoma de Madrid, 194 pp.
- Medialdea, A., Thomsen, K.J., Murray, A.S., Benito, G. (2014). Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology, 22, 11-24. doi.org/10.1016/j.quageo.2014.01.004
- Medialdea, A., Insua-Arévalo, J.M., García-Mayordomo, J. (2021). Cronología extendida en depósitos aluviales mediante luminiscencia estimulada por luz violeta (VSL) en el SE de la Península Ibérica. Actas X Congreso Geológico de España, Vitoria (España).
- Medialdea, A., Brill, D., King, G.E., Zander, A., Lopez-Ramirez, M.R., Bartz, M., Brückner, H. (2022). Violet stimulated luminescence as an alternative for dating complex colluvial sediments in the Atacama Desert. Quaternary Geochronology 71, 101337. doi.org/10.1016/j.quageo.2022.101337
- Murray, A.S. y Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X
- Porat, N., Amit, R., Zilberman, E., Enzel, Y. (1997). Luminescence dating of fault-related alluvial fan sediments in the southern Arava Valley, Israel. Quaternary Science Reviews, 16, 3-5, 397-402, https://doi.org/10.1016/S0277-3791(96)00101-1.
- Prescott J. R. y Hutton J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term time variations. Radiation Measurements 23, 497-500. https://doi.org/10.1016/1350-4487(94)90086-8
- Silva, P.G., Roquero, E., Bardají, T., Medialdea, A. (2020). Fases Pleistocenas y Holocenas de sedimentación aluvial y formación de suelos en el SE semiárido de España (Cordilleras Béticas Orientales). Cuaternario y Geomorfología 34, 41-61. https://doi.org/10.17735/cyg.v34i1-2.78815.
- Simon, J.L., Ezquerro, L., Arlegui, L.E., Liesa, C.L., Luzon, A., Medialdea, A., Garcia, A., Zarazaga, D. (2019). Role of transverse structures in paleoseismicity and drainage rearrangement in rift systems: the case of the Valdecebro fault zone (Teruel graben, eastern Spain). Journal of Earth Sciences 108, 5, 1429-1449. doi.org/10.1007/s00531-019-01707-9
- Sohbati, R., Murray, A.S., Buylaert, J-P., Ortuño, M., Cunha, PP., Masana, E. (2012). Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) – a comparison between OSL, IRSL and post-IR IRSL ages. Boreas, 41, 2, 250-262. https://doi.org/10.1111/j.1502-3885.2011.00230.x
- Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L. (2005). Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements, 39, 1, 47-61, https://doi.org/10.1016/j.radmeas.2004.01.039.
- Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L. (2007). Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements, 42, 370-379. https://doi.org/10.1016/j.radmeas.2007.01.041
- Tukey, J.W. (1977). Exploratory Data Analysis. Addison Wesley, Reading, Mass.
- UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2010). UNSCEAR 2008 Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific, Vol. 1, 339. https://doi.org/10.18356/9b8f628f-en
- del Val, Duval, M., Medialdea, A., Bateman, M.D., Moreno, D., Arriolabengoa, M., Aranburu, A., Iriarte, E. (2019). First chronostratigraphic framework of fluvial terrace systems in the eastern Cantabrian margin (Bay of Biscay, Spain). Quaternary Geochronology, 49, 108-114. https://doi.org/10.1016/j.quageo.2018.07.001
- Wintle, A.G. (1973). Anomalous fading of thermoluminescence in mineral samples. Nature 245, 107–118. https://doi.org/10.1038/245143a0
- Wintle, A.G. (1997). Luminescence dating: laboratory procedures and protocols. Radiation Measurements, 27, 769–817. https://doi.org/10.1016/S1350-4487(97)00220-5